SCHOOL OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR: 2019-20

YEAR: II **SEMESTER: I REGULATION: R18**

Subj	ect Name: Probability and Statistics &complex variables	SubjectCode:MA153BP	
At the	At the end of the Course, Students will be able to		
CO1	CO1 Distinguish between discrete and continuous probability Distributions		
CO2	Solve problems involving random variables Analyze and interpret	statistical data using	
CO2	appropriate probability distributions.		
CO3	Apply suitable test to accept or reject a given hypothesis for small and large sampels		
CO4	Analyze complex functions with reference to theiranalyticity using	g Cauchy's Riemann	
	equations		
CO5	Find the Taylors and Laurent's series expansion of complex funct Cauchy's integral and residue theorems	ions, integrating using	
	Cauchy's integral and residue theorems		

Subject Name: Mechanics of Solids SubjectCode:ME302PC

	•	
At the	end of the Course, students will be able to	
CO1	CO1 Determine stresses, strains, elastic constants of solid bodies under various types of loads.	
CO2	Construct SFD&BMD in various loaded beams and also obtain relation S.F,B.M and rate of	
	loading	
CO3	Derive the bending equation and also determine the flexural and shear stresses for various	
	sections.	
CO4	Explain the theories of failures and analyze the compatibility of various design parameters.	
CO5	Solve the problems related to torsion of shafts and thin cylinders	

Subject Name: Metallurgy and Material Science

Subj	Subject Name: Metallurgy and Material Science SubjectCode:ME303PC	
At the	At the end of the Course, students will be able to	
CO1	Illustrate crystallization of metals and constitution of alloys	
CO2	Construct the equilibrium diagrams to describe the different phases of	metals and alloys
CO3	Understand different heat treatment processes	
CO4	Explain different types of cast irons, steels, non-ferrous metals	and alloys with their
	applications	
CO5	Illustrate ceramics, polymers and composites	

Subject Name: Production Technology

SubjectCode:ME304P	C

	<u> </u>
At the	end of the Course, students will be able to
CO1	Explain the various types of castings.
CO2	Discuss the different weld joints and welding processes.
СОЗ	Explain advanced welding processes like Inert gas, laser welding process, Brazing and
	Explain advanced welding processes like Inert gas, laser welding process, Brazing and Soldering process and their defects.
CO4	Distinguish Hot and Cold working of metals in Rolling, Extrusion and Forging operations.
CO5	Describe the operations of coining, embossing, spinning and different sheet metal operations.

Subject Name: Thermodynamics

SubjectCode:ME305PC

At the	At the end of the Course, students will be able to		
CO1	Describe the basics of thermodynamics along with temperature concept		
CO2	Discuss the significance of thermodynamics laws with applications		
CO3	Explain the Properties of pure substances and behavior perfect gas		
CO4	Describe the behavior of real gases, gas mixtures and Psychrometric processes		
CO5	Analyze the performance of Air standard, Gas, Vapor power and refrigeration cycles		

Subject Name: Production Technology Lab

SubjectCode:ME306PC

At the	At the end of the Course, students will be able to		
CO1	Produce different casting models using sand casting and prepare patterns considering		
	allowances using wood working lathe.		
CO2	Practice Arc, Spot and Plasma welding techniques.		
CO3	Use TIG welding process to produce different joints.		
CO4	Use different sheet metal operations using different press dies.		
CO5	Produce plastic components using injection & blow molding machines.		

Subject Name: Machine Drawing Practice Lab

SubjectCode:ME307PC

At the end of the Course, students will be able to	
CO1	Understand the representation of different material conventions used in machine drawing.
CO2	Draw the machine elements like keys, couplings, cotters, riveted, bolted and Welded joints.
CO3	Construct an assembly drawing using part drawings of machine components.
CO4	Sketch the orthographic views of assembly drawings.
CO5	Understand the representation of different material conventions used in machine drawing.

Subject Name: Material science and Mechanics of Solids Lab

SubjectCode:ME308PC

At the end of the Course, students will be able to		
CO1	Compare crystal models of simple cubic, BCC, FCC and HCP and Prepare the specimen using rough grinding, finish grinding and polishing.	
	using rough grinding, finish grinding and polishing.	
CO2	Use different types of etchants to expose the microstructure of metal and alloys and Understand the procedure to improve hardness.	
	Understand the procedure to improve hardness.	
CO3	Find the hardness of various heat treated and untreated carbon steels.	
	Determine the properties of materials like Young's modulus, shear modulus, hardness	
	Determine the properties of materials like Young's modulus, shear modulus, hardness number and impact strength of metals by Izod and Charpy test	
CO5	Conduct the experiment on UTM to find tensile and compressive strength of given specimen.	

Subject Name: Kinematics of Machinery

CO5 Explain the different types of gears, gear trains and their applications.

Subje	ct Name: Kinematics of Machinery	SubjectCode:IVIE4U2PC
At the	At the end of the Course, students will be able to	
CO1	Explain various types of links, mechanisms and its inversions	
CO2	Find the velocity and acceleration of links in various mechanisms.	
CO3	Describe various straight line motion, steering gear mechanisms and	hook's joint
CO4	Compute the maximum velocity and acceleration during outward a	nd return stroke during

SubjectCode.NAE402DC

Subject Name: Thermal Engineering - I

CO₄

Sub	jectCode:ME403PC
-----	------------------

At the	At the end of the Course, students will be able to		
CO1	Classify the IC Engines and explain various systems in it.		
CO2	Analyze the combustion process in both SI &CI engines.		
CO3	Find the various performance parameters of IC Engines and compressors		
CO4	Distinguish various types of compressors and discuss their working principles.		
CO5	Evaluate the performance of Gas turbine cycles along with applications		

Subject Name: Fluid Mechanics and Hydraulic Machines

different types of follower motion in cams.

SubjectCode:ME40	04PC	
------------------	------	--

At the	At the end of the Course, students will be able to	
CO1	Explain various fluid properties and pressure measuring devices	
CO2	Identify type of fluid flow patterns and describe continuity equation	
CO3	Demonstrate the boundary layer concept and analyze a variety of practical fluid flows and	
CO3	measuring devices	
CO4	Explain turbo machinery, hydraulic turbines and estimate the performance characteristic	
004	curves of hydraulic turbines	
CO5	Determine the performance characteristics of centrifugal and reciprocating pumps	

Subject Name: Instrumentation and Control system

SubjectCode:ME405PC

At the end of the Course, students will be able to	
CO1	Describe the various elements of generalized measurement system.
CO2	Describe the Working principle of various devices for the measurement of temperature,
	Displacement and pressure.
CO3	Illustrate the working of level indicator devices, speed measurement devices, vibrometer,
	accelerometer pick-ups and flow measurement Devices.
CO4	Explain the working of electrical strain, resistant and dew point meters
CO5	Describe the open and closed servo mechanisms control systems

Subject Name: Basic Electrical and Electronics Engineering

At the	At the end of the Course, students will be able to	
CO1	Able to Recall fundamentals of electrical circuits and outline measuring instruments	
CO2	Able to Discuss DC generators and types of DC motors	
CO3	Able to Explain the working of transformers and AC machines	
CO4	Able to Analyze characteristics of diodes rectifiers and transistors	
CO5	Able to Explain construction of cathode ray oscilloscope	

SubjectCode:EE401ES

SubjectCode:ME307PC

SubjectCode:ME308PC

Subject Name: Instrumentation and Control system Lab

At the	At the end of the Course, students will be able to	
CO1	Calibration of instruments like pressure gauge and strain gauge	
CO2	Calibration of instruments like micro meter and tacho meter	
CO3	Demonstrate the use of seismic pick up to study mechanical vibrations.	

Subject Name: Fluid Mechanics and Hydraulic Machines Lab

At the end of the Course, students will be able to	
CO1	Estimate the performance parameters of hydraulic turbines
CO2	Analyze the performance of centrifugal pumps and reciprocating pumps by drawing its
CO2	performance curves
CO3	Calculate the co-efficient of discharge for venturimeter and orifice meter
CO4	Estimate major and minor losses in a pipe flow
	Apply momentum equation to determine impact of jet on vanes and demonstrate the
	Bernoulli's theorem

Subject Name: Basic Electrical and Electronics Engineering Lab

Subj	ect Name: Basic Electrical and Electronics Engineering Lab	SubjectCode:EE409ES
At the	end of the Course, students will be able to	
CO1	Able to analyze and solve electrical circuits using network laws and	theorems
CO2	Able to understand and analyze basic Electric and Magnetic circuits	S.
CO3	Able to study the working principles of Electrical Machines	
CO4	Able to understand components of Low Voltage Electrical Installati	ons
CO5	Able to identify and characterize diodes and various types of transis	stors

Subject Name: Design of Machine Members-I

SubjectCode:ME501PC

At the	end of the Course, students will be able to
GO1	Describe theories of failures in design considerations, importance of fatigue loading in
COI	Describe theories of failures in design considerations, importance of fatigue loading in machine elements
CO2	Design of fasteners, rivets, welded joints
CO3	Design keys, cotters, knuckle joints
CO4	Design shaft for complex loading condition
CO5	Analyze and design helical compression and tension springs for static, dynamic and fatigue

Subject Name: Thermal Engineering-I

SubjectCode:ME502PC

At the	At the end of the Course, students will be able to		
CO1	Classify the IC Engines and explain various systems in it.		
CO2	Analyze the combustion process in both SI &CI engines.		
CO3	Find the various performance parameters of IC Engines and compressors		
CO4	Distinguish various types of compressors and discuss their working principles.		
CO5	Evaluate the performance of various types of refrigeration cycles and Explain the basics of air		
	conditioning.		

Subject Name: Metrology and Machine Tools

SubjectCode:ME503PC

At the end of the Course, students will be able to	
CO1	Understand the principle of material removing process and geometry of cutting tools
CO2	Understand working of lathe, drilling, boring, shaping, slotting, planing and milling machines
CO3	Understand the various surface finishing machines and the different operations performed
CO4	Explain the basic concepts of Limits, Fits and tolerances and describe different standards of
	measuring instruments
CO5	surface roughness and geometric features of parts

Subject Name: Renewable energy sources

SubjectCode:ME853EE

At the	At the end of the Course, students will be able to	
CO1	Describe the principles of solar radiation and its measuring instruments	
CO2	Illustrate the types of solar energy collectors, storage methods and applications.	
CO3	Explain sources and Conversion Principles of Wind, Bio mass and Geothermal Energy	
	sources.	
CO4	Explain Ocean, Tidal and Wave Energy Sources with their Conversion principles.	
CO5	Summarize various direct energy conversion technologies	

Subject Name: Fundamentals of Management

SubjectCode:SM504MS

At the end of the Course, students will be able to		
CO1	Understand the significance of Management in their profession.	
CO2	Explore the management practices in their domain area.	
CO2	Describe the various management functions like planning, organizing, staffing, leading,	
CO3	Describe the various management functions like planning, organizing, staffing, leading, motivation and control aspects are learnt.	

Subject Name: Thermal Engineering Lab

Suhi	iectCo	۸۸∙مh	FSA	SDC
JUD	ICLLCO	uc.ivi	LJU	JFC

At the	At the end of the Course, students will be able to		
CO1	Estimate the performance and draw the characteristic curves for diesel and petrol engines		
CO2	Demonstrate the heat balance sheet by conducting experiments on petrol and diesel engines		
CO3	Study the working principle of water and fire tube boilers		
CO4	Determine the isothermal and volumetric efficiencies of reciprocating compressor		
CO5	Draw the valve and port timing diagrams for two stroke and four stroke IC engines.		

Subject Name: Machine Tools Lab

SubjectCode:ME506PC

At the end of the Course, students will be able to		
CO1	Use lathe machine to perform step turning, taper turning, thread cutting and knurling operations for the given specimen.	
CO2	Understand and perform the various operations on driling, milling, grinding machines	
CO3	Understand and perform the various operations on slotting, planning.	

Subject Name: Engineering Metrology Lab

SubjectCode:ME507PC

	0 0 01
At the	end of the Course, students will be able to
CO1	Measure length, height, gear thickness, diameters using vernier gauges and micrometers.
CO2	Measure angles using bevel protractor and sine bar.
CO3	Use different methods for the measurement of screw thread.

Subject Name: Thermal Engineering-II

SubjectCode:ME601PC

At the end of the Course, students will be able to		
CO1	Describe the steam power cycle with P-V, T-S diagrams and state various methods to	
	improve cycle efficiency.	
CO2	Distinguish Fire tube and water tube boilers and Describe the steam flow through nozzle	
	thermodynamically	
CO3	Explain the working principle steam turbines and compute the work done and efficiency of	
003	these turbines by using velocity triangles	
CO4	Discuss various types of gas turbine cycles	
CO5	Classify the jet engines and explain working principles of rocket engines	

Subject Name: Design of Machine Members-II

SubjectCode:ME602PC

At the	At the end of the Course, students will be able to		
CO1	Design journal, ball and roller bearings under static and dynamic loadings		
CO2	Design IC engine elements for maximum strength		
CO3	Design power transmission elements like belt drive, rope drive and chain drives.		
CO4	Design and analyze spur, helical, bevel and worm gears with respect different loading		
	conditions.		
CO5	Design power screws for possible failure modes.		

Subject Name: Heat Transfer

SubjectCode:ME603PC

	<u> </u>		
At the end of the Course, students will be able to			
CO1	Describe various modes of heat transfer and derive governing equations for conduction		
CO2	Solve problems on 1D steady and transient state heat conduction		
	Compute heat transfer coefficients for natural convection and forced convection in external		
	and internal flows.		
CO4	Discuss heat transfer with phase change and Calculate radiation heat transfer in space between black and grey bodies.		
	between black and grey bodies.		
CO5	Understand the heat exchangers performance by LMTD and NTU methods.		

Subject Name: Machine Tool Design

SubjectCode:ME613PE

At the end of the Course, students will be able to		
CO1	Understand the basics of machine tool motions and kinematic mechanisms of various	
	machines.	
CO2	Describe the feed and speed for different types of machines and design the gear box for	
	various applications.	
CO3	Describe the basic requirements of machine tool structure, design principles and their	
CO3	functions.	
CO4	Understand the concepts of design of guideways, power screw and splines and its functions in	
004	Machine tool.	
CO5	Calculate the various tests involved in the machine tool to analyse the static and dynamic	
	vibrations.	

Subject Name: Entrepreneurship and Small Business Enterprises

A+A1			
At th	At the end of the Course, students will be able to		
CO1	Understand the basic concepts of Entrepreneurship		
CO2	To illustrate the new venture creation		
CO3	Explain the management of MSMEs and Sick enterprises		
CO4	Explain the importance of Managing Marketing and Growth in Enterprises		
COS	Discuss the Strategic perspectives in Entrepreneurship		

Subject Name: Heat Transfer Lab

	•	
At the end of the Course, students will be able to		
CO1	Demonstrate steady and transient state conduction experiments to estimate thermal	
	conductivity of different materials.	
CO2	Obtain temperature distribution along the length of the pin fin under forced and free	
	convection.	
CO3	Determine Stefan Boltzmann constant and emissivity by radiation principles.	
CO4	Demonstrate the heat pipe applications and Calculate the critical heat flux by performing	
004	experiment	
CO5	Determine the effectiveness and overall heat transfer coefficient of parallel and counter flow	
003	heat exchanger.	

Subject Name: CADD and MATLAB

SubjectCode:ME605PC

SubjectCode:PE623OE

SubjectCode:ME604PC

At the	At the end of the Course, students will be able to		
CO1	Apply computer methods for solving a wide range of engineering problems.		
CO2	Able to use computer engineering software to solve and present problem solutions in a		
	technical format.		
CO3	Able to utilize computer skills to enhance learning and performance in other engineering and		
1003	science courses.		
CO4	Able to demonstrate professionalism in interactions with Colleagues, faculty, and staff.		

Subject Name: Advanced Engineering Communication Skills Lab

SubjectCode:EN606HS

At the end of the Course, students will be able to			
CO1	Develops confidence to use relevant vocabulary, using apt kinesics or body language in		
	communication.		
CO2	Infer the meaning of the text easily through comprehension techniques like, skimming, scanning and effective reading through proper vocabulary.		
	scanning and effective reading through proper vocabulary.		
CO3	Exhibit the writing skills through letters, reports and resume writing from the text and use for		
003	all professional settings.		
CO4	Gather ideas, information and organize them relevantly in making presentations.		
CO5	Self assured to organize and deliver discussions, presentations and strategies to face the		
	interviews effectively.		

Subject Name: CAD/CAM SubjectCode:ME701PC

At the end of the Course, students will be able to					
	Outline the significance of CAD/CAM in present days.				
CO2	Apply the concept of geometric modeling, surface modeling and solid modeling to create different models.				
CO3	Develop NC and CNC programming codes for different machining operations.				
CO4	Describe the concept of group technology, computer aided process planning, manufacturing resources planning and ERP.				
CO5	Explain the concept of FMS, computer aided quality control and CIM.				

SubjectCode:ME702PC

SubjectCode:ME703PC

SubjectCode:ME705PC

Subject Name: Instrumentation and Control System

	•			
At the end of the Course, students will be able to				
CO1	Develops confidence to use relevant vocabulary, using apt kinesics or body language in			
	communication.			
CO2	Infer the meaning of the text easily through comprehension techniques like, skimming,			
CO2	Infer the meaning of the text easily through comprehension techniques like, skimming, scanning and effective reading through proper vocabulary.			
СОЗ	Exhibit the writing skills through letters, reports and resume writing from the text and use for			
	all professional settings.			
CO4	Gather ideas, information and organize them relevantly in making presentations.			
COS	Self assured to organize and deliver discussions, presentations and strategies to face the			
CO5	interviews effectively.			

Subject Name: CAD/CAM Lab

	•			
At the end of the Course, students will be able to				
CO1	Develop 2D and 3D models using AutoCAD, Pro-E Softwares.			
CO2	Solve the structural and heat transfer problems using Ansys software.			
CO3	Produce mechanical components on CNC machine.			
CO4	Explain CNC part programs to perform various machining operations.			
CO5	Make use of CAM software to develop different process sheets and tool management system.			

Subject Name: Instrumentation and Control system Lab

Subj	ect Name: Instrumentation and Control system Lab	SubjectCode:ME704PC
At the end of the Course, students will be able to		
CO1	Calibration of instruments like pressure gauge and strain gauge	
CO2	Calibration of instruments like micro meter and tacho meter	
CO3	Demonstrate the use of seismic pick up to study mechanical vibration	ıs.

Subject Name: Industry oriented mini project

At the end of the Course, students will be able to			
	Adopt the skills to communicate effectively and to present ideas clearly and		
	coherently to specific audience		
CO2	learn on their own, reflect on their learning and take appropriate actions to improve it		
CO3	Build skills through working in a team to achieve common goals		

Subject Name: Seminar SubjectCode:ME706PC

At the end of the Course, students will be able to			
CO1	Find the relevant topics related to Mechanical Engineering		
CO2	Evaluate the topics in a planned manner		
CO3	Utilize technical resources		

Subject Name: Operation Research

SubjectCode:ME724	PE
-------------------	----

At the end of the Course, students will be able to				
CO1	Understand the evolution and applications of Operations Research in various fields.			
	Mathematically formulate a real-world problem as linear programming problems and solve			
	those using different techniques to get an optimal solution.			
CO2	Solve transportation problems to minimize cost or maximize profit and understand the			
	Principles of assignment of jobs and find optimal assignment.			
CO ₃	Solve problems of sequencing to get minimum idle as well as total elapsed time. Evaluate the			
1003	best timings for Individual and Group replacement.			
CO4	Use Game theory to identify the optimal strategies for players. Analyze the inventory and			
L CO4	apply them in domain specific situations.			
	Model a dynamic system as a queuing model and compute important performance measures.			
CO5	Understand how to model and solve problems using dynamic programming. Use simulation			
	techniques to solve queuing and inventory problems.			

Subject Name: Robotics

SubjectCode:ME733PE

At the end of the Course, students will be able to						
CO1	Identify the components of industrial robot and describe their functions.					
CO2	Analyze different types of transformations in robot motion.					
CO3	Solve the basic problems on forward, inverse kinematics and dynamics of robot.					
CO4	Explain trajectory planning, actuators and feedback components of robot.					
CO5	Describe the applications of robot in manufacturing, material handling, assembly and					
	Describe the applications of robot in manufacturing, material handling, assembly and inspection.					

Subject Name: Advanced Manufacturing Technology

SubjectCode:ME744P

At the end of the Course, students will be able to					
CO1	Describe various CAD issues for 3D printing and rapid prototyping and related				
CO2	Operations for STL model manipulation.				
СОЗ	Formulate and solve typical problems on reverse engineering for surface reconstruction from				
	physical prototype models through digitizing and spline-based surface fitting.				
CO4	Formulate and solve typical problems on reverse engineering for surface reconstruction from				
CO4	digitized mesh models through topological modelling and subdivision surface fitting.				
CO5	Explain and summarize the principles and key characteristics of additive manufacturing technologies and commonly used 3D printing and additive manufacturing systems.				
	technologies and commonly used 3D printing and additive manufacturing systems.				

Subject Name: Production Planning and Control

Sub	jectC	Code	e:IV	IE8	54P	E

	<u> </u>		
At the end of the Course, students will be able to			
CO1	Describe objectives, functions of PPC and various types of production.		
CO2	Understand the importance of forecasting techniques in production problems		
	Explain the functions of inventory, selective inventory control techniques and inventory		
	control systems.		
CO4	Solve problems of production scheduling using line balancing, aggregate planning.		
CO5	Understand the activities of dispatching, follow up and applications of computer in PPC.		

Subject Name: Unconventional Machining Process

Cubi	iaatca	4~.04	IE863PE	•
Subi	lecto	ue.iv	CODSPE	

At the end of the Course, students will be able to		
CO1	Differentiate conventional and unconventional machining processes.	
CO2	Explain the constructional details and working of USM, AJM, WJM and AWJ, ECG, ECM.	
СОЗ	Explain the constructional details, working of EDM, EDG and EDWC machining processes	
	and calculate the machining time, metal removal rate.	
CO4	Understand the working of EBM, LBM and Plasma arc cutting process.	
CO5	Compare various finishing processes in unconventional machining processes.	

Subject Name: Renewable Energy Sources

SubjectCode:MT831OE

At the end of the Course, students will be able to			
CO1	Analyze the demand and resources of various energy systems		
1 (())	Illustrate the principles of solar radiation along with solar collectors, storage methods and		
	applications.		
CO3	Explain sources and Conversion Principles of Wind energy and Bio mass		
CO4	Explain sources and Conversion Principles of hydel and geothermal energy		
CO5	Describe Ocean, Tidal and Wave Energy Sources with their Conversion principles.		

Subject Name: Major Project

SubjectCode:ME801PC

At the end of the Course, students will be able to		
CO1	Students will acquire the skills to communicate effectively and to present ideas clearly in	
	industry domain	
CO2	Apply the theoretical knowledge of courses to resolve the problems in exist systems or	
	develop a new system	
CO3	Develop collaborative skills through working in a team to achieve common goals	
CO4	Build physical prototypes to execute technical concepts	